Influence of Diabetes Mellitus on Long-Term (Five-Year) Outcomes of Drug-Eluting Stents and Coronary Artery Bypass Grafting for Multivessel Coronary Revascularization

Yong-Giun Kim, MD, Duk-Woo Park, MD, Woo Seok Lee, MD, Gyung-Min Park, MD, Byung Joo Sun, MD, Chang Hoon Lee, MD, Ki Won Hwang, MD, Sung Won Cho, MD, Yoo Ri Kim, MD, Hae Geun Song, MD, Jung-Min Ahn, MD, Won-Jang Kim, MD, Jong-Young Lee, MD, Soo-Jin Kang, MD, Seung-Whan Lee, MD, Young-Hak Kim, MD, Cheol Whan Lee, MD, Seong-Wook Park, MD, Seungbong Han, PhD, Sung-Ho Jung, MD, Suk Jung Choo, MD, Cheol Hyun Chung, MD, Jae-Won Lee, MD, and Seung-Jung Park, MD.*

Diabetes mellitus is a major factor for coronary artery disease (CAD) and for diffuse and progressive atherosclerosis. We evaluated the outcomes of drug-eluting stent (DES) placement and coronary artery bypass grafting (CABG) in 891 diabetic patients (489 for DES implantation and 402 for CABG) and 2,151 nondiabetic patients (1,058 for DES implantation and 1,093 for CABG) with multivessel CAD treated from January 2003 through December 2005 and followed up for a median 5.6 years. Outcomes of interest included death; the composite outcome of death, myocardial infarction (MI), or stroke; and repeat revascularization. In diabetic patients, after adjusting for baseline covariates, 5-year risk of death (hazard ratio 1.01, 95% confidence interval 0.77 to 1.33, p = 0.96) and the composite of death, MI, or stroke (hazard ratio 1.03, 95% confidence interval 0.80 to 1.31, p = 0.91) were similar in patients undergoing DES or CABG. However, rate of repeat revascularization was significantly higher in the DES group (hazard ratio 3.69, 95% confidence interval 2.64 to 5.17, p < 0.001). These trends were consistent in nondiabetic patients (hazard ratio 0.80, 95% confidence interval 0.55 to 1.16, p = 0.23 for death; hazard ratio 0.77, 95% confidence interval 0.56 to 1.05, p = 0.10 for composite of death, MI, or stroke; hazard ratio 2.77, 95% CI 1.95 to 3.91, p <0.001 for repeat revascularization). There was no significant interaction between diabetic status and treatment strategy in these patients.

Methods

This study is a subgroup analysis of patients in the Asan Multivessel Registry with and without medically treated DM. The Asan Multivessel Registry is a single-center prospective study designed to evaluate the effects of percutaneous coronary intervention with DESs and CABG on patients with multivessel CAD in clinical practice. Briefly, this registry included consecutive patients with multivessel CAD who received percutaneous coronary intervention with DESs, with or without other devices, or underwent isolated CABG at Asan Medical Center (Seoul, Korea) from January 2003 through December 2005.

© 2012 Elsevier Inc. All rights reserved. (Am J Cardiol 2012;109:1548 –1557)
Table 1
Baseline characteristics of patients according to diabetic status and treatment strategy

<table>
<thead>
<tr>
<th>Variable</th>
<th>Diabetic Patients</th>
<th>Non-diabetic Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DES (n = 489)</td>
<td>CABG (n = 402)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>63.5 ± 9.3</td>
<td>62.8 ± 8.1</td>
</tr>
<tr>
<td>Men</td>
<td>304 (62.2%)</td>
<td>275 (68.4%)</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>25.3 ± 3.1</td>
<td>24.6 ± 3.0</td>
</tr>
<tr>
<td>Medically treated diabetes</td>
<td>403 (82.4%)</td>
<td>326 (81.1%)</td>
</tr>
<tr>
<td>Oral hypoglycemic agent</td>
<td>86 (17.6%)</td>
<td>76 (18.9%)</td>
</tr>
<tr>
<td>Years with diabetes</td>
<td>9.9 ± 8.2</td>
<td>10.9 ± 8.4</td>
</tr>
<tr>
<td>Hypertension*</td>
<td>313 (64.0%)</td>
<td>247 (61.4%)</td>
</tr>
<tr>
<td>Current smoker</td>
<td>113 (23.1%)</td>
<td>66 (16.4%)</td>
</tr>
<tr>
<td>Hyperlipidemia†</td>
<td>105 (21.5%)</td>
<td>202 (50.2%)</td>
</tr>
<tr>
<td>Previous coronary angioplasty</td>
<td>88 (18.0%)</td>
<td>59 (14.7%)</td>
</tr>
<tr>
<td>Previous congestive heart failure</td>
<td>11 (2.2%)</td>
<td>28 (7.0%)</td>
</tr>
<tr>
<td>Moderate or severe chronic obstructive pulmonary disease</td>
<td>6 (1.2%)</td>
<td>8 (2.0%)</td>
</tr>
<tr>
<td>Cerebrovascular or carotid artery disease</td>
<td>36 (7.4%)</td>
<td>69 (17.2%)</td>
</tr>
<tr>
<td>Peripheral vascular disease</td>
<td>17 (3.5%)</td>
<td>43 (10.7%)</td>
</tr>
<tr>
<td>Renal failure</td>
<td>26 (5.3%)</td>
<td>43 (10.7%)</td>
</tr>
<tr>
<td>EuroSCORE</td>
<td>.7 ± 2.5</td>
<td>4.5 ± 2.7</td>
</tr>
<tr>
<td>Previous myocardial infarction</td>
<td>29 (5.9%)</td>
<td>21 (5.2%)</td>
</tr>
<tr>
<td>Sinus rhythm</td>
<td>458 (93.7%)</td>
<td>381 (94.8%)</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>17 (3.5%)</td>
<td>12 (3.0%)</td>
</tr>
<tr>
<td>Others</td>
<td>14 (2.9%)</td>
<td>9 (2.2%)</td>
</tr>
<tr>
<td>Ejection fraction (%)</td>
<td>9 (1.9%)</td>
<td>20 (5.1%)</td>
</tr>
<tr>
<td>30–40%</td>
<td>8 (1.7%)</td>
<td>40 (10.1%)</td>
</tr>
<tr>
<td>40–50%</td>
<td>58 (12.0%)</td>
<td>42 (10.6%)</td>
</tr>
<tr>
<td>50%–60%</td>
<td>407 (84.4%)</td>
<td>293 (72.9%)</td>
</tr>
<tr>
<td>Data missing</td>
<td>7 (1.4%)</td>
<td>7 (1.7%)</td>
</tr>
<tr>
<td>Mean ejection fraction (%)</td>
<td>58.3 ± 9.2%</td>
<td>54.7 ± 12.2%</td>
</tr>
<tr>
<td>2-Vessel disease</td>
<td>258 (52.8%)</td>
<td>66 (16.4%)</td>
</tr>
<tr>
<td>With proximal left anterior descending artery</td>
<td>89 (18.2%)</td>
<td>39 (9.7%)</td>
</tr>
<tr>
<td>Discharge medications</td>
<td>169 (34.6%)</td>
<td>27 (6.7%)</td>
</tr>
<tr>
<td>With proximal left anterior descending artery</td>
<td>231 (47.2%)</td>
<td>336 (83.6%)</td>
</tr>
<tr>
<td>Without proximal left anterior descending artery</td>
<td>106 (21.7%)</td>
<td>216 (53.7%)</td>
</tr>
<tr>
<td>Left main coronary artery disease</td>
<td>125 (25.6%)</td>
<td>120 (29.9%)</td>
</tr>
<tr>
<td>Total occlusion</td>
<td>46 (9.4%)</td>
<td>103 (25.6%)</td>
</tr>
<tr>
<td>Aspirin</td>
<td>484 (99.0%)</td>
<td>385 (95.8%)</td>
</tr>
<tr>
<td>Clopidogrel</td>
<td>481 (98.4%)</td>
<td>316 (76.8%)</td>
</tr>
<tr>
<td>Angiotensin-converting enzyme inhibitors</td>
<td>214 (43.8%)</td>
<td>139 (34.6%)</td>
</tr>
<tr>
<td>Statin</td>
<td>331 (67.7%)</td>
<td>230 (57.2%)</td>
</tr>
<tr>
<td>Nitrates</td>
<td>374 (76.5%)</td>
<td>369 (91.8%)</td>
</tr>
</tbody>
</table>

Coronary Artery Disease/DES Versus CABG for Multivessel Disease
1, 2003 through December 31, 2005. Patients who had previous CABG or underwent concomitant valvular or aortic surgery, had an acute myocardial infarction (MI) within 24 hours before revascularization, or presented with cardiogenic shock were excluded.

The decision to perform percutaneous coronary intervention or CABG depended on a physician’s choice, considering available clinical and anatomic factors, and/or a patient’s preference. During the study period, coronary stenting was performed exclusively with DESs. Percutaneous coronary intervention was performed according to current practice guidelines. Choice of a specific type of DES (i.e., sirolimus-eluting stent [CYPHER and CYPHER SELECT, Cordis, Johnson and Johnson, Bridgewater, New Jersey] or paclitaxel-eluting stent [TAXUS Express and TAXUS Liberté, Boston Scientific, Natick, Massachusetts])

<table>
<thead>
<tr>
<th>Variable</th>
<th>Diabetic Patients (n = 891)</th>
<th>Nondiabetic Patients (n = 2,151)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DES</td>
<td>CABG</td>
<td>p Value</td>
</tr>
<tr>
<td>(n = 489)</td>
<td>(n = 402)</td>
<td><0.001</td>
</tr>
<tr>
<td>SYNTAX score in available cohort (n = 1,914)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of patients</td>
<td>443</td>
<td>217</td>
</tr>
<tr>
<td>Mean SYNTAX score</td>
<td>18.3 ± 7.9</td>
<td>30.4 ± 10.7</td>
</tr>
<tr>
<td>SYNTAX score category</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low (≤22)</td>
<td>324 (73.1%)</td>
<td>53 (24.4%)</td>
</tr>
<tr>
<td>Intermediate (23–32)</td>
<td>95 (21.4%)</td>
<td>79 (36.4%)</td>
</tr>
<tr>
<td>High (≥33)</td>
<td>24 (5.4%)</td>
<td>85 (39.2%)</td>
</tr>
</tbody>
</table>

Data are reported as mean ± SD or number (percentage).

EuroSCORE = European System for Cardiac Operative Risk Evaluation.

* Defined as systolic blood pressure ≥140 mm Hg, or diastolic blood pressure ≥90 mm Hg, or receiving antihypertensive treatment.

† Defined as total cholesterol >200 mg/dl or receiving antilipidemic treatment.

Table 2

Predictors of selection for drug-eluting stents: results of nonparsimonious logistic regression modeling used to develop the propensity score

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Diabetic Patients</th>
<th>Nondiabetic Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR (95% CI)</td>
<td>Chi-Square</td>
<td>p Value</td>
</tr>
<tr>
<td>Age</td>
<td>1.00 (0.97–1.03)</td>
<td>1.66</td>
</tr>
<tr>
<td>Male gender</td>
<td>0.87 (0.56–1.37)</td>
<td>3.04</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>1.04 (0.98–1.11)</td>
<td>12.07</td>
</tr>
<tr>
<td>Hypertension*</td>
<td>1.21 (0.80–1.81)</td>
<td>0.02</td>
</tr>
<tr>
<td>Current smoker</td>
<td>1.77 (1.06–2.96)</td>
<td>13.61</td>
</tr>
<tr>
<td>Hyperlipidemia†</td>
<td>0.24 (0.16–0.36)</td>
<td>84.95</td>
</tr>
<tr>
<td>Insulin requiring diabetes</td>
<td>1.04 (0.60–1.80)</td>
<td>0.02</td>
</tr>
<tr>
<td>Years with diabetes</td>
<td>1.00 (0.97–1.03)</td>
<td>0</td>
</tr>
<tr>
<td>Previous coronary angioplasty</td>
<td>0.85 (0.51–1.40)</td>
<td>1.18</td>
</tr>
<tr>
<td>Previous congestive heart failure</td>
<td>1.14 (0.39–3.33)</td>
<td>5.50</td>
</tr>
<tr>
<td>Moderate or severe chronic obstructive pulmonary disease</td>
<td>0.45 (0.11–1.87)</td>
<td>2.08</td>
</tr>
<tr>
<td>Cerebrovascular or carotid artery disease</td>
<td>0.34 (0.15–0.80)</td>
<td>13.53</td>
</tr>
<tr>
<td>Periphal vascular disease</td>
<td>0.49 (0.20–1.78)</td>
<td>10.51</td>
</tr>
<tr>
<td>Renal failure</td>
<td>0.46 (0.20–1.07)</td>
<td>2.22</td>
</tr>
<tr>
<td>EuroSCORE</td>
<td>1.99 (0.93–2.73)</td>
<td>7.51</td>
</tr>
<tr>
<td>Previous myocardial infarction</td>
<td>0.28 (0.15–0.52)</td>
<td>39.54</td>
</tr>
<tr>
<td>Ejection fraction (%)</td>
<td>1.00 (0.98–1.02)</td>
<td>1.90</td>
</tr>
<tr>
<td>2-Vessel disease</td>
<td>3.20 (2.11–4.86)</td>
<td>37.16</td>
</tr>
<tr>
<td>Proximal left anterior descending coronary artery disease</td>
<td>0.60 (0.41–0.89)</td>
<td>6.53</td>
</tr>
<tr>
<td>Left main disease</td>
<td>0.74 (0.44–1.27)</td>
<td>24.11</td>
</tr>
<tr>
<td>Total occlusion</td>
<td>0.12 (0.07–0.21)</td>
<td>71.00</td>
</tr>
<tr>
<td>SYNTAX score</td>
<td>0.91 (0.89–0.93)</td>
<td>194.10</td>
</tr>
</tbody>
</table>

* Defined as systolic blood pressure ≥140 mm Hg, or diastolic blood pressure ≥90 mm Hg, or receiving antihypertensive treatment.

† Defined as total cholesterol >200 mg/dl or receiving antilipidemic treatment.

CI = confidence interval; OR = odds ratio. Other abbreviation as in Table 1.
Figure 1. Kaplan–Meier event-free survival curves of 5-year outcomes according to diabetic status and treatment group in (left) diabetic patients and (right) nondiabetic patients: (A) death; (B) composite of death, myocardial infarction, or stroke; and (C) repeat revascularization.
<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Total Number of Events/ Number of Patients</th>
<th>Unadjusted</th>
<th>Multivariable Adjusted†</th>
<th>Adjusted by IPTW</th>
<th>Interaction p Value for Diabetic Status</th>
<th>Interaction p Value for Diabetic Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DES</td>
<td>CABG</td>
<td>HR (95% CI)</td>
<td>p Value</td>
<td>HR (95% CI)</td>
<td>p Value</td>
</tr>
<tr>
<td>Death</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetic patients</td>
<td>57/489</td>
<td>60/402</td>
<td>0.82 (0.57–1.17)</td>
<td>0.27</td>
<td>1.37 (0.86–2.17)</td>
<td>0.19</td>
</tr>
<tr>
<td>Nondiabetic patients</td>
<td>72/1,058</td>
<td>115/1,093</td>
<td>0.68 (0.51–0.91)</td>
<td>0.01</td>
<td>0.85 (0.63–1.15)</td>
<td>0.30</td>
</tr>
<tr>
<td>Composite outcome (death, myocardial infarction, or stroke)</td>
<td>72/489</td>
<td>76/402</td>
<td>0.80 (0.58–1.10)</td>
<td>0.16</td>
<td>1.38 (0.92–2.08)</td>
<td>0.12</td>
</tr>
<tr>
<td>Diabetic patients</td>
<td>99/1,058</td>
<td>158/1,093</td>
<td>0.67 (0.52–0.86)</td>
<td>0.002</td>
<td>0.79 (0.61–1.02)</td>
<td>0.07</td>
</tr>
<tr>
<td>Nondiabetic patients</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repeat revascularization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetic patients</td>
<td>91/489</td>
<td>22/402</td>
<td>3.88 (2.43–6.20)</td>
<td><0.001</td>
<td>3.61 (2.25–5.77)</td>
<td><0.001</td>
</tr>
<tr>
<td>Nondiabetic patients</td>
<td>168/1,058</td>
<td>65/1,093</td>
<td>3.12 (2.33–4.16)</td>
<td><0.001</td>
<td>3.12 (2.34–4.17)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

* Hazard ratios are for the drug-eluting stent compared to the coronary artery bypass grafting group.
† Hazard ratios were adjusted for age; gender; diabetes; duration of diabetes; presence or absence of congestive heart failure; chronic obstructive pulmonary disease; cerebrovascular or carotid disease, peripheral arterial disease, and renal failure; European System for Cardiac Operative Risk Evaluation; history or no history of myocardial infarction before procedure; ejection fraction; 2- or 3-vessel disease; presence or absence of involvement of the proximal left anterior descending or left main coronary artery; total obstruction; and SYNTAX score.

HR = hazard ratio; IPTW = inverse probability-of-treatment weighting. Other abbreviation as in Table 2.
was at the discretion of the operator. At this time, second-
generation DESs (i.e., zotarolimus-, everolimus-, and bioli-
mus-eluting stents) were not available to the treating physi-
cians. Antiplatelet therapy and periprocedural anticoagulation
followed standard regimens. After the procedure, patients were
prescribed aspirin indefinitely and clopidogrel for
6 months regardless of DES type. Treatment beyond this time was at the discretion of each physician. Surgical revascularization was performed using standard bypass techniques; whenever possible, the internal thoracic artery was used for revascularization of the left anterior descending coronary artery. When possible, complete revascularization was performed using arterial conduits or saphenous vein grafts. This study was approved by our local institutional review board.

End points of the study were death; composite of death, MI, or stroke; and repeat revascularization. Death was defined as death from any cause. A diagnosis of acute MI was defined as complications at index admission (defined as new pathologic Q waves after index treatment) or follow-up MI requiring subsequent hospitalizations (i.e., emergency admission with a principal diagnosis of MI), as described previously. Stroke, as indicated by neurologic deficits, was confirmed by a neurologist based on imaging studies. Repeat revascularization included target vessel revascularization regardless of whether the procedure was clinically or angiographically driven and nontarget-vessel revascularization. In the DES group, stent thrombosis was defined as definite or probable events according to the Academic Research Consortium classification. All outcomes of interest were carefully verified and adjudicated by independent clinicians. The diabetic subgroup was defined as all patients actively receiving treatment with oral hypoglycemic agents or insulin.

The registry prospectively contains information on patient demographics, coexisting clinical conditions, hemodynamic status, left ventricular function, extent of disease, details of procedures, and in-hospital and follow-up outcomes by independent research personnel. Patients were clinically followed 1 month and 6, and 12 months after the procedure and annually thereafter by office visit or telephone contact. The follow-up period was through January 31, 2010 to ensure that all patients had an opportunity for 4 years and up to approximately 7 years of follow-up. For validation of complete fol-

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Total Number of Events/Number of Patients</th>
<th>Unadjusted</th>
<th>Multivariable Adjusted†</th>
<th>Interaction p Value for Diabetic Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DES</td>
<td>CABG</td>
<td>HR (95% CI)</td>
<td>p Value</td>
</tr>
<tr>
<td>2-Vessel disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death</td>
<td>868</td>
<td>343</td>
<td>0.56 (0.25–1.23)</td>
<td>0.15</td>
</tr>
<tr>
<td>Diabetic patients</td>
<td>19/258</td>
<td>9/66</td>
<td>0.56 (0.35–0.92)</td>
<td>0.02</td>
</tr>
<tr>
<td>Nondiabetic patients</td>
<td>35/610</td>
<td>30/277</td>
<td>0.56 (0.35–0.92)</td>
<td>0.02</td>
</tr>
<tr>
<td>Composite outcome (death, myocardial infarction, or stroke)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetic patients</td>
<td>28/258</td>
<td>12/66</td>
<td>0.61 (0.31–1.21)</td>
<td>0.16</td>
</tr>
<tr>
<td>Nondiabetic patients</td>
<td>52/610</td>
<td>33/277</td>
<td>0.77 (0.50–1.19)</td>
<td>0.24</td>
</tr>
<tr>
<td>Repeat revascularization</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetic patients</td>
<td>50/258</td>
<td>5/66</td>
<td>2.82 (1.12–7.07)</td>
<td>0.028</td>
</tr>
<tr>
<td>Nondiabetic patients</td>
<td>94/610</td>
<td>23/277</td>
<td>2.11 (1.33–3.34)</td>
<td>0.002</td>
</tr>
<tr>
<td>3-Vessel disease</td>
<td>679</td>
<td>1,152</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death</td>
<td>38/231</td>
<td>51/336</td>
<td>1.16 (0.76–1.77)</td>
<td>0.48</td>
</tr>
<tr>
<td>Diabetic patients</td>
<td>37/448</td>
<td>85/816</td>
<td>0.83 (0.56–1.22)</td>
<td>0.34</td>
</tr>
<tr>
<td>Nondiabetic patients</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Composite outcome (death, myocardial infarction, or stroke)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetic patients</td>
<td>44/231</td>
<td>64/336</td>
<td>1.04 (0.71–1.53)</td>
<td>0.85</td>
</tr>
<tr>
<td>Nondiabetic patients</td>
<td>47/448</td>
<td>125/816</td>
<td>0.70 (0.50–0.97)</td>
<td>0.034</td>
</tr>
<tr>
<td>Repeat revascularization</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetic patients</td>
<td>41/231</td>
<td>17/336</td>
<td>4.10 (2.32–7.23)</td>
<td><0.001</td>
</tr>
<tr>
<td>Nondiabetic patients</td>
<td>74/448</td>
<td>42/816</td>
<td>3.84 (2.62–5.64)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

* Hazard ratios are for the drug-eluting stent compared to the coronary artery bypass grafting group.
† Hazard ratios were adjusted for age; gender; diabetes; duration of diabetes; presence or absence of congestive heart failure; chronic obstructive pulmonary disease; cerebrovascular or carotid disease, peripheral arterial disease, and renal failure; European System for Cardiac Operative Risk Evaluation; history or no history of myocardial infarction before procedure; ejection fraction; presence or absence of involvement of the proximal left anterior descending or left main coronary artery; total obstruction; and SYNTAX score.

Abbreviations as in Tables 2 and 3.
Table 5
Hazard ratios for clinical adverse outcomes after drug-eluting stents compared to coronary artery bypass grafting according to diabetic status and SYNTAX score*

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Total Number of Events/Number of Patients</th>
<th>Unadjusted</th>
<th>Multivariable Adjusted†</th>
<th>Interaction p Value for Diabetic Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DES</td>
<td>CABG</td>
<td>HR (95% CI)</td>
<td>p Value</td>
</tr>
<tr>
<td>Low score (≤22)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death</td>
<td>1,068</td>
<td>129</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetic patients</td>
<td>30/324</td>
<td>5/53</td>
<td>0.98 (0.38–2.54)</td>
<td>0.97</td>
</tr>
<tr>
<td>Nondiabetic patients</td>
<td>44/744</td>
<td>676</td>
<td>0.85 (0.34–2.15)</td>
<td>0.74</td>
</tr>
<tr>
<td>Composite outcome (death, myocardial infarction, or stroke)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetic patients</td>
<td>42/324</td>
<td>653</td>
<td>1.16 (0.49–2.72)</td>
<td>0.74</td>
</tr>
<tr>
<td>Nondiabetic patients</td>
<td>67/744</td>
<td>767</td>
<td>1.24 (0.54–2.85)</td>
<td>0.62</td>
</tr>
<tr>
<td>Repeat revascularization</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetic patients</td>
<td>58/324</td>
<td>1/53</td>
<td>10.37 (1.44–74.85)</td>
<td>0.02</td>
</tr>
<tr>
<td>Nondiabetic patients</td>
<td>124/744</td>
<td>767</td>
<td>1.96 (0.92–4.20)</td>
<td>0.08</td>
</tr>
<tr>
<td>Intermediate score (23–32)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death</td>
<td>274</td>
<td>184</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetic patients</td>
<td>14/95</td>
<td>179</td>
<td>0.90 (0.43–1.88)</td>
<td>0.77</td>
</tr>
<tr>
<td>Nondiabetic patients</td>
<td>15/179</td>
<td>179</td>
<td>0.50 (0.25–0.99)</td>
<td>0.05</td>
</tr>
<tr>
<td>Composite outcome (death, myocardial infarction, or stroke)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetic patients</td>
<td>15/95</td>
<td>20/97</td>
<td>0.64 (0.33–1.25)</td>
<td>0.19</td>
</tr>
<tr>
<td>Nondiabetic patients</td>
<td>18/179</td>
<td>22/105</td>
<td>0.45 (0.24–0.84)</td>
<td>0.012</td>
</tr>
<tr>
<td>Repeat revascularization</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetic patients</td>
<td>21/95</td>
<td>7/97</td>
<td>2.79 (1.18–6.58)</td>
<td>0.019</td>
</tr>
<tr>
<td>Nondiabetic patients</td>
<td>21/179</td>
<td>5/105</td>
<td>2.51 (0.94–6.66)</td>
<td>0.07</td>
</tr>
<tr>
<td>High score (≥33)</td>
<td>58</td>
<td>201</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death</td>
<td>5/24</td>
<td>13/85</td>
<td>1.41 (0.50–3.96)</td>
<td>0.52</td>
</tr>
<tr>
<td>Nondiabetic patients</td>
<td>3/34</td>
<td>10/116</td>
<td>1.03 (0.28–3.73)</td>
<td>0.97</td>
</tr>
<tr>
<td>Composite outcome (death, myocardial infarction, or stroke)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetic patients</td>
<td>7/24</td>
<td>13/85</td>
<td>1.99 (0.79–4.98)</td>
<td>0.14</td>
</tr>
<tr>
<td>Nondiabetic patients</td>
<td>3/34</td>
<td>15/116</td>
<td>0.67 (0.19–2.30)</td>
<td>0.52</td>
</tr>
<tr>
<td>Repeat revascularization</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetic patients</td>
<td>5/24</td>
<td>2/85</td>
<td>11.36 (2.18–59.15)</td>
<td>0.004</td>
</tr>
<tr>
<td>Nondiabetic patients</td>
<td>4/34</td>
<td>7/116</td>
<td>2.15 (0.63–7.40)</td>
<td>0.22</td>
</tr>
</tbody>
</table>

* Hazard ratios are for the drug-eluting stent compared to the coronary artery bypass grafting group.
† Hazard ratios adjusted for age; gender diabetes; duration of diabetes; presence or absence of congestive heart failure; chronic obstructive pulmonary disease; cerebrovascular or carotid disease, peripheral arterial disease, and renal failure; European System for Cardiac Operative Risk Evaluation; history or no history of myocardial infarction before the procedure; ejection fraction; 2- or 3-vessel disease; presence or absence of involvement of the proximal left anterior descending or left main coronary artery; total obstruction; and SYNTAX score.
Abbreviations as in Tables 2 and 3.

Survival curves were constructed using the Kaplan–Meier method and compared using log-rank test.

Differences in risk-adjusted long-term rates of study outcomes between patients in the DES and CABG groups were assessed using multivariable Cox proportional hazards regression. Adjusted covariates included patient age and gender, presence or absence of different clinical and coexisting conditions, left ventricular function, and number and extent of diseased vessels. The proportional hazards assumption was confirmed by examination of log(–log [survival]) curves and by testing of partial (Schoenfeld) residuals, and

low-up data on mortality, information about vital status was obtained through January 31, 2010 from the National Population Registry of the Korea National Statistical Office using a unique personal identification number.
no relevant violations were found. To decrease the impact of treatment selection bias and potential confounding in an observational study, we also performed rigorous adjustment for baseline differences using weighted Cox proportional hazards regression models with inverse probability-of treatment weighting.15 Weights for patients undergoing CABG were the inverse of \(1 - \) propensity score, and weights for patients undergoing stenting were the inverse of the propensity score. Propensity scores were estimated without regard to outcomes using multiple logistic regression analysis. We developed a full nonparsimonious model that included all variables listed in Table 1. Model discrimination was assessed with c-statistics, and model calibration was assessed with Hosmer–Lemeshow statistics. Treatment effects were evaluated separately in diabetic and nondiabetic patients. Then, interaction terms in the multivariate Cox model and weighted Cox model using the inverse probability-of-treatment weighting method were used to test for the statistical significance of the effects of the 2 treatment strategies according to diabetic status on clinical outcomes.

In addition, outcomes were analyzed based on extent of diseased vessels (2- or 3-vessel disease) and SYNTAX score. Of diabetic patients who underwent CABG had higher-risk profiles for clinical and angiographic characteristics. Of diabetic patients who underwent percutaneous coronary intervention, 77.1% received sirolimus-eluting stents; in nondiabetic patients, 80.5% received sirolimus-eluting stents and 22.9% received paclitaxel-eluting stents; in nondiabetic patients, 80.5% received sirolimus-eluting stents and 22.9% received paclitaxel-eluting stents. Median follow-up in the overall population was 5.6 years (interquartile range 4.6 to 6.3), with 97.4% undergoing complete follow-up for major clinical events including 97.7% of patients in the DES group and 97.0% in the CABG group \((p = 0.20)\). Predictors of choice of revascularization strategy are listed in Table 2.

Unadjusted event-free survival curves are shown in Figure 1 and crude and adjusted risks according to treatment approach and diabetic status are presented in Table 3. After adjustment for differences in baseline risk factors between treatment procedures using multivariable Cox regression analysis and weighted Cox regression using inverse probability-of-treatment weighting methods, adjusted treatment-related risks of death and the composite of death, MI, or stroke did not differ significantly in diabetic and nondiabetic patients. Adjusted risk of repeat revascularization was consistently higher in the DES than in the CABG group. When we tested the interaction between diabetic status and treatment strategy on clinical outcomes, we found no statistically significant interactions after adjustment for possible confounders (Table 3).

Table 4 presents risks according to diabetic status and extent of diseased vessels. There were no significant differences of treatment effect in risks of death and composite of death, MI, or stroke in diabetic and nondiabetic patients with 3-vessel disease. In nondiabetic patients with 2-vessel disease, however, adjusted risk of mortality was significantly lower in the DES than in the CABG group. Risk of repeat revascularization was significantly lower in the CABG group among all subgroups.

During the study enrollment period, the SYNTAX score algorithm was not available to the physician. Retrospective retrieval of baseline angiogram for detailed measurement of the SYNTAX score was available in 63% of the overall cohort. Mean SYNTAX score and SYNTAX score category are listed in Table 1. Risks according to the SYNTAX score are presented in Table 5. After adjustment of covariates, risks of death and composite outcomes were similar between the DES and CABG groups in diabetic and nondiabetic patients with low, intermediate, and high scores, although adjusted hazard ratios nonsignificantly favored CABG in diabetic patients with a high score. Risk of repeat revascularization was significantly higher in diabetic patients but did not differ significantly in nondiabetic patients with low, intermediate, and high scores.

Discussion

The major findings of our study are that risk-adjusted long-term (5-year) rates of death and the composite outcomes of death, MI, or stroke were similar in patients with multivessel CAD undergoing DES implantation and CABG, whereas rates of repeat revascularization with CABG were significantly lower for diabetic and nondiabetic patients. These relative treatment effects were not significantly modified by diabetic status.

DM is a major determinant of poor clinical outcomes after percutaneous and surgical revascularizations in patients with multivessel CAD. Long-term mortality and incidence of restenosis and repeat revascularization were significantly lower in nondiabetic than in diabetic patients undergoing percutaneous coronary intervention.9,17 Although DESs remarkably improves efficacy compared to bare-metal stents, the tendency toward poorer outcomes in patients with diabetes was also observed with DESs.18–20 In addition, morbidity and mortality rates were higher in diabetic than in nondiabetic patients undergoing CABG.21–23 Therefore, diabetic status is a major consideration when choosing the optimal revascularization strategy for patients with multivessel CAD. Previous studies have shown that CABG was superior to percutaneous coronary intervention in diabetic patients with multivessel CAD. For example, the Bypass Angioplasty Revascularization Investigation (BARI) showed that CABG was associated with a significantly higher survival rate compared to percutaneous coronary intervention in diabetic patients with multivessel
CAD. A meta-analysis of data from 10 randomized trials of patients undergoing elective myocardial revascularization confirmed that CABG had an apparent survival advantage over percutaneous coronary intervention in diabetic patients with multivessel CAD. Those studies, however, were performed before the introduction of DESs.

Several recent studies have compared outcomes of percutaneous coronary intervention using DESs to CABG in diabetic patients with multivessel CAD. In a subgroup analysis of diabetic patients enrolled in the SYNTAX trial, there was no significant difference in the 1-year composite of death, MI, or stroke between patients who underwent percutaneous coronary intervention with paclitaxel-eluting stents and those who underwent CABG, whereas the rate of repeat revascularization was significantly higher in the percutaneous coronary intervention group. This treatment effect was not modified by diabetic status. The Coronary Artery Revascularization in Diabetes (CARDia) trial also showed that 1-year rates of death and the composite of death, MI, or stroke were similar in the percutaneous coronary intervention and CABG groups, with a higher rate of repeat revascularization associated with stenting. However, length of follow-up in these trials was insufficient to evaluate the long-term safety of DESs, including the propensity for late stent thrombosis and late-occurring clinical events, and might be limited in reflecting “real-world” practice in which patients do not meet strict criteria.

Our study involved the consecutive recruitment of patients with multivessel CAD who required revascularization in routine practice and compared very long-term follow-up in patients with and without diabetes who underwent percutaneous coronary intervention with DESs or CABG. We found that the long-term mortality and serious composite outcomes rates were similar in the percutaneous coronary intervention with DES and CABG groups, with no significant interaction between DM and treatment methods on outcomes. Risk of revascularization was consistently higher with stenting irrespective of diabetic status. These findings suggest that the optimal clinical judgment of the physician provides long-term clinical equipoise between DES placement and CABG for multivessel CAD revascularization in terms of mortality and serious ischemic complications and that the prognostic influence of diabetic status on long-term treatment outcomes is minimal.

This study had several limitations, the first of which is its design as a nonrandomized observational cohort study. Although we rigorously adjusted for baseline covariates using inverse probability-of-treatment weighting methods, there were inherent limitations in choice of treatment procedure such as a potential bias from confounding by indication. In addition, unknown confounders may have affected our results. Second, because our results are mainly derived from subgroup analysis, they should be regarded as hypothetical and hypothesis-generating only and should not necessarily dictate any change in current practice patterns. Third, in our study, we did not thoroughly and prospectively measure the variable of completeness of revascularization according the detailed angiographic definition. Fourth, the direct application of our findings to current real-world practice using second-generation DESs is likely limited. The comparative long-term benefits of second-generation DESs and CABG should be evaluated in large prospective clinical studies.

Patients with multivessel CAD who underwent percutaneous coronary intervention with DES placement or CABG had similar long-term risks of mortality and the composite of serious ischemic complications, with these outcomes not substantially modified by diabetic status. Risk for repeat revascularization was consistently higher with percutaneous coronary intervention than with CABG irrespective of diabetic status.

14. Laskey WK, Yancy CW, Maisel WH. Thrombosis in coronary drug-eluting stents: report from the meeting of the Circulatory System Medical Devices Advisory Panel of the Food and Drug Administration...

